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Abstract Three-dimensional flows over backward facing steps are analysed by means of a finite
element procedure, which shares many features with the SIMPLER method. In fact, given an
initial or guessed velocity field, the pseudovelocities, i.e. the velocities that would prevail in the
absence of the pressure field, are found first. Then, by enforcing continuity on the pseudovelocity
field, the tentative pressure is estimated, and the momentum equations are solved in sequence for
velocity components. Afterwards, continuity is enforced again to find corrections that are used to
modify the velocity field and the estimated pressure field. Finally, whenever necessary, the energy
equation is solved before moving to the next step.

Introduction
In the solution of three-dimensional incompressible flow problems, sequential
(or decoupled) methods have a clear advantage over fully coupled methods,
especially as the number of nodes increases. As a consequence, a lot of ongoing
finite element research is directed towards sequential procedures that have
many features in common with well known finite difference algorithms such as
the SIMPLE and the SIMPLER methods (Haroutunian et al., 1993; Comini et al.,
1996; Patankar and Spalding, 1972; Patankar, 1980).

Among the uncoupled finite element methods, projection algorithms are
considered to be quite reliable (Gresho, 1990; Gresho and Chan, 1990). In most
projection algorithms the discretized continuity and momentum equations are
manipulated to obtain a discretized analogue of the Poisson equation for
pressure. In such a case, to avoid overconstraining the velocity field, the
functions weighting the continuity equation, i.e. the pressure interpolating
polynomials, are chosen to be one degree less than the polynomials
interpolating velocity components.

As an alternative, equal order projection algorithms can be derived by
obtaining a Poisson equation for pressure from approximations of continuous,
rather than discretized, mass and momentum balances. Equal order
implementations have the very desirable feature of allowing the same
interpolating functions to be used for velocity components and pressure.
Furthermore, they yield a true Laplacian matrix in the discretized versions of
the pressure equations. This reduces the computing time and, simultaneously
improves accuracy when the elements are distorted (Gresho et al., 1995). Most
equal order algorithms share some essential features of the SIMPLE procedure
since they update the pressure field on the basis of a pressure correction
equation related to the velocity corrections necessary to ensure continuity
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(Patankar and Spalding, 1972). On the other hand, the SIMPLE method is
known to yield rather poor pressure corrections, in particular with high
Reynolds number flows (Patankar, 1980). Since the same feature is shared by
the finite element versions of the scheme, we felt that there was room for the
introduction of a SIMPLER-like projection algorithm in the finite element
context. In our algorithm, the tentative pressure field is estimated at each time
step from a pressure Poisson equation enforcing continuity on the
pseudovelocities, i.e. the velocities that would prevail in the absence of the
pressure field. Then, the momentum equations are solved in sequence for
velocity components, and continuity is enforced again to find corrections that
modify both the velocity field and the estimated pressure field. Finally, if
required, the energy equation is solved before moving to the next step.

A finite element procedure based on the algorithm outlined above has
already been validated in Nonino and Croce (1997) by successfully comparing
computed results with literature data referring to typical benchmark problems.
In this paper we illustrate detailed computational experiments conducted with
reference to isothermal and stratified flow over backward-facing steps. In the
isothermal case numerical results are shown to be in very good agreement with
the experimental results, of Armaly et al. (1982). Isothermal flow over a
backward-facing step has already been studied by one of the authors in Nonino
(1998). However, due to a geometry different from that of Armaly et al. (1982), a
complete validation against experimental data was not carried out in that
paper. In the stratified flow case there are no comparison data available in the
external literature for the three-dimensional problem. In fact, to the authors'
knowledge, the only available examples of application have been presented by
Nonino et al. (1997). Consequently, the illustration of the main features of
stratified flows presented here is based on the above mentioned computational
experiments.

Statement of the problem
With reference to the Boussinesq approximation, the momentum and
continuity equations which govern the laminar flow of a constant property
fluid in a three-dimensional domain can be written as

�
@v

@ #
� �v � rv � �r2vÿr pÿ � � t ÿ t0� �g �1�

r � v � 0 �2�
respectively. In the above equations, v is the velocity vector, # is time, � is
density, � is the dynamic viscosity, � is the coefficient of thermal expansion, g
is the gravity vector, t is the temperature and p is the pressure evaluated with
reference to the hydrostatic conditions at the reference temperature t0. In the
absence of volumetric heating and neglecting the effects of viscous dissipation,
the energy equation can be written as
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� c
@ t

@ #
� � cv � r t � kr2 t �3�

where c is the specific heat and k is the thermal conductivity.
A velocity field must be specified as the initial condition, while appropriate

boundary conditions must be imposed on inflow boundaries, outflow
boundaries and solid boundaries. At inflow and solid boundaries, we can
specify, for example, both velocity

v � vp �4�
and temperature

t � tp �5�
as boundary conditions of the first kind.

At outflow boundaries, in general, we have a fully-developed flow situation
which leads to boundary conditions of the second kind, for both velocity

rv � n � 0 �6�
and temperature

r t � n � 0 �7�
In equations (6) and (7), n is the outward normal to the boundary surface. The
above assumptions do not reduce the generality of the formulation since
different boundary conditions, such as those on symmetry and adiabatic
boundaries, can be expressed by combining equations (4) to (7).

Solution procedure
The solution steps are derived in a continuous setting, where no reference is
made to the particular space discretization that will be employed afterwards.
As we have already pointed out, the tentative pressure p� is first estimated at
each new time step �n� 1� on the basis of the velocity field vn at the time step
n. The pressure estimation is obtained by writing

�
v̂ÿ vn

�#� �p
� �vn � rvn � 1

2
� r2 v̂�r2 vn
ÿ �ÿ � � tn ÿ t0� �g �8�

�
vn�1 ÿ v̂

�#� �p
� ÿr p� �9�

where v̂ is the pseudovelocity, i.e. the velocity that would prevail in the absence
of the pressure field, and (�#�p is the time step utilised for the purpose of
estimating pressure. In equation (8), the advective term is dealt with explicitly,
while the diffusion term is approximated by means of a Crank-Nicolson scheme
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(Gresho, 1990; Gresho and Chan, 1990). Taking the divergence of equation (9)
and assuming

r � vn�1 � 0 �10�
as a means of enforcing continuity through the action ofrp�, we obtain

r2p� � �

�#� �p
r � v̂ �11�

i.e. the pressure Poisson equation for p�.
The estimated pressure p� is utilised to solve the momentum equations by

means of the fully implicit scheme

�
v� ÿ vn

�#� �v
� �vn � rv� � �r2 v� ÿ r p� ÿ � � tn ÿ t0� �g �12�

where v� is the velocity field that corresponds to p�, and the time step ��#�v is
usually larger than ��#�p. Since v�, in general, does not respect continuity, we
can find pressure corrections p0 which ``project'' v� onto the divergence-free
space vn�1 by writing

�
vn�1 ÿ v�

�#� �v
� � v0

�#� �v
� ÿr p0 �13�

where v0 is the velocity correction field. Taking the divergence of equation (13)
and assuming the validity of equation (10) as a means of enforcing continuity
through the action ofr p0, we obtain

r2p0 � �

�#� �v
r � v� �14�

i.e. the pressure Poisson equation for p0. Finally, we use p0 to compute the
pressure field

pn�1 � p� � p0 �15�
and v0, obtained from equation (13), to compute the velocity field

vn�1 � v� � v0 �16�
One may wonder why the pressure correction step (15) is utilised here, while it
is not considered in the SIMPLER algorithm. The reason is that the pressure
equation (11) has been derived from differential forms of the momentum and
continuity equations. As a consequence, when equation (11) is discretized with
respect to the space variables, it is not easy to ensure that its terms are
consistent with the corresponding pressure terms in the space-discretized
version of equation (12). Therefore, p� must be regarded as an approximate
pressure, and the correction (15) really improves the estimate of p at the end of
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the time step. Furthermore, by maintaining the pressure correction feature (15),
equations (12-15) yield the same SIMPLE-like algorithm described in Comini
and Del Giudice (1982). Thus, we can switch the pressure estimation procedure
described by equations (8-11) on and off, employing this additional feature only
when it is needed, i.e. with high Reynolds number flows.

When the velocity and pressure fields have been computed we can solve, if
required, the energy equation before moving to the next step. This equation is
discretized by means of the fully implicit scheme

� c
tn�1 ÿ tn

�#� �t
� � c vn � r tn�1 � kr2 tn�1 �17�

where we assume ��#�t � ��#�v.

Weak forms of the governing equations
The momentum equations (8) and (12), written in Cartesian coordinates, and the
energy equation (17) can be considered particular cases of the time-discretized
general transport equation (Comini et al., 1994). In the present case, the
application of the Bubnov-Galerkin finite element method leads to weak forms
where the boundary terms can be disregarded. In fact the nodal equations are
not needed where we impose boundary conditions of the first kind, while on the
other boundaries we have zero normal-derivative boundary conditions.

The pressure equation (11) and the pressure correction equation (14) are
particular forms of the Poisson equation. Following the standard procedure, for
each node we obtain a suitable integral form by weighting and integrating the
differential equations over the computational domain. Then, the application of
Green's theorem to the Laplacians, leads to the weak formsZ




rWi � r p� d 
�
Z




Wi
�

�#� �p
r � v̂ d 
 �

Z
S

Wir p� � n d S �0

�18�Z



rWi � r p0 d 
�
Z




Wi
�

�#� �v
r � v� d 
 �

Z
S

Wir p0 � n d S �0

�19�

for the pressure equation (11) and the pressure correction equation (14),
respectively. By taking into account equations (9) and (13), respectively, the
boundary terms in the above equations can be expressed asZ

S

Wir p� � n d S �
Z

S

Wi �
vn�1 ÿ v̂

�#� �p
� n d S �20�
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Z
S

Wir p0 � n d S �
Z

S

Wi �
vn�1 ÿ v�

�#� �v
� n d S �21�

The right hand sides of the previous equations are certainly equal to zero on
symmetry boundaries or on boundaries where we impose conditions of the first
kind (vn�1 � v̂ � v� � vp). Moreover, if, before solving equations (18) and
(19), we correct the computed velocity distribution on other boundaries to
enforce global mass conservation, we make the right hand sides of equations
(20) and (21) equal to zero (Comini et al., 1996). As a consequence, in the solution
of the pressure equations, only the pressure levels must be set by the boundary
conditions p� � 0 or p0 � 0 applied on the reference point(s).

Finite element formulation
Substituting the approximations for the nodal values of u; v;w; t; p�; p and p0

into the appropriate weak forms, we arrive at systems of space discretized
equations (Comini et al., 1994). The solution strategy outlined in the previous
sections leads to the calculation procedure illustrated below.

At the beginning of each time step, we compute the nodal values of the
pseudovelocity components from the matrix equations

�M
ûÿ un

�#� �p
� 1

2
�K û� un� � � �A un ÿ � gx � b � 0 �22a�

�M
v̂ÿ vn

�#� �p
� 1

2
�K v̂� vn� � � �A vn ÿ � gy � b � 0 �22b�

�M
ŵÿwn

�#� �p
� 1

2
�K ŵ�wn� � � �A wn ÿ � gz � b � 0 �22c�

based on the weak forms of the Cartesian components of equation (8).
The nodal values of the estimated pressure are computed from the matrix

equation

K p� � ÿ �

�#� �p
Du û�Dv v̂�Dw ŵ� � �23�

based on the weak form (20).
The nodal values of the approximate velocity components are evaluated

from the matrix equations

�M
u� ÿ un

�#� �v
� �K� �A� �u� �Dup� ÿ � gx � b � 0 �24a�
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�M
v� ÿ vn

�#� �v
� �K� �A� � v� �Dvp� ÿ � gy � b � 0 �24b�

�M
w� ÿwn

�#� �v
� �K� �A� �w� �Dwp� ÿ � gz � b � 0 �24c�

based on the weak forms of the Cartesian components of equation (12).
The nodal values of the correction pressure are computed from the matrix

equation

K p0 � ÿ �

�#� �v
Du u� �Dv v� �Dw w�� � �25�

based on the weak form (21).
The nodal values of the velocity-correction components are evaluated from

the matrix equations

� �M
u0

�#� �v
� ÿDup0 �26a�

� �M
v0

�#� �v
� ÿDvp0 �26b�

� �M
w0

�#� �v
� ÿDwp0 �26c�

which correspond to the Cartesian components of equation (13). In equations
(42), �M indicates the mass matrix lumped by the usual row-summing
technique.

At the end of the time step, the nodal values of velocity components and the
pressure are updated, according to the obvious formulae

un�1 � u� � u0 �27a�

vn�1 � v� � v0 �27b�

wn�1 � w� �w0 �27c�
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pn�1 � p� � p0 �28�

Finally, the nodal values of temperature tn�1 are computed from the matrix
equation

� c M
tn�1 ÿ tn

�#� �v
� k K� � c A� � tn�1 � 0 �29�

based on the weak form of equation (17).
Standard definitions, not reported here for the sake of brevity, apply to

matrix and vector entries appearing in the previous equations (Nonino and
Comini, 1997).

Numerical results
The reliability of the numerical procedure described in the previous section has
already been demonstrated in Nonino and Croce (1997) by comparing computed
results with literature data for typical benchmark problems. In this paper the
numerical examples concern three-dimensional isothermal and stratified flows
over backward-facing steps.

Isothermal flow
Isothermal flow over a backward facing step has been considered first. We call
s the step height, h the inlet channel height (total channel height is thus
ht � s� h). Step height to inlet channel height ratio is s=h � 0:9423 and the
channel width is W � 34:61h, in order to compare our results to experimental
data (Armaly et al., 1982) and numerical results from other authors (Williams
and Baker, 1996). For Reynolds numbers below Re = 400 flow should nearly
recover 2D results, at least in terms of midspan reattachment length (Armaly et
al., 1982); 3D numerical results are available, to authors' knowledge, up to Re =
800. Three values of the Reynolds number have thus been considered, Re = 400,
600, 800, in order to evaluate significant 3D flow configuration and further
validate the code.

All model equations have been cast in non-dimensional form, using the
double of inlet channel height H � 2h, the average inlet velocity U0 and the
time � � H=U0 as reference length, velocity and time, respectively. The
dimensionless domains considered are 0 < x < 15, ÿ8:65 < y < 8:65 and
ÿ0:47115 < z < 0:5. The fully developed velocity profiles at inlet was
calculated from the equation (Shah and London, 1978)

u � umax 1ÿ zÿ 0:25j j
0:25

� �2
" #

1ÿ 2 yj j
W=H

� �m� �
�30�

with umax � 1:501 m � 13:6.
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Thus, the specified boundary conditions are:

. u given by equation (30), v � w � 0 on the inlet section
(x � 0; 0 < z < 0:5);

. u � v � w � 0 on the step wall (x � 0;ÿ0:47115 < z < 0) and on the
lateral walls (y � �8:65);

. u � v � w � 0 and on the top wall (z � 0:5);

. u � v � w � 0 and on the bottom wall (z � ÿ0:47115);

. @u=@n � @v=@n � @w=@n � 0 at the outlet (x � 15);

. p � 0 at a node at y � 0 and z � ÿ0:5 on the outlet section (x � 15), on
the symmetry plane.

The initial conditions are u � 0.5, v � w � 0, p � 0 in the whole domain.
Symmetry considerations allowed the reduction of the computational

domain in the y direction to 0 < y < 8:65. A grid of 90x30x16 linear elements
has been used, with grid points clustered near inlet section in x direction and
near solid walls in y and z direction. Time steps �#� �p= 0.025 and �#� �v=
0.05 have been chosen.

Velocity vectors and pressure contours on the midspan symmetry plane
(y � 0), for the case Re = 800, are shown in Figure 1. The flow structure
appears similar to the well-known two-dimensional case, with a large primary
recirculating region downstream of the step and a secondary one near the top
wall.

Three-dimensional effects can be detected from the streamlines plots,
presented in Figure 2 for the three different Reynolds number. Vortices at the
vertical endwalls are present at all Reynolds numbers. The development of
these vortices is described in Figure 3, showing, for the Re = 800 case, velocity
vectors near vertical end wall on three cross-section planes at different
distances from inlet (x = 2, 4, 6, 8). The pressure field on vertical and bottom
walls is shown in Figure 4.

In order to identify recirculating regions, computed oil flow streaklines on
the bottom and top wall of the channel are shown in Figure 5. High Reynolds
numbers stress the importance of 3D effects, and the upper recirculation is
reduced with respect to literature results for 2D computation (Williams and
Baker, 1996).

(a)

(b)

Figure 1.
Isothermal flow: (a)
velocity vectors and (b)
pressure contour on
midspan plane,
Re = 800. Pressure
values from ±0.07
to 0.1743, step 0.0063
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Computed values for the reattachment length of the primary vortex at the
midspan plane (y � 0) are compared in Figure 6 with experimental data and
numerical results from other authors. Present results for the three-dimensional
flow show very good agreement with experimental data of Armaly et al. (1982),
and with the 3D computation of Williams and Baker (1996). Two-dimensional
prediction from the present method and from other authors (Gartling, 1990;

(a)

(b)

(c)

(d)

Figure 3.
Isothermal flow: velocity

vectors on three cross-
section planes at

different distances from
inlet: (a): x = 2; (b): x �4;

(c): x = 6; (d): x = 8;
Re = 800

Re = 400

Re = 600

Re = 800

Figure 2.
Isothermal flow:

streamlines at Re = 400,
600, 800
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Sohn, 1988; Williams and Baker, 1996) are also reported in Figure 5. In order to
compare our results with 2D literature data, computations have been carried
out with a s=H ratio of 0.5, the same used by Gartling (1990) and Sohn (1988),
while Williams and Baker (1996), considered s=H � 0:47115: The agreement of
the present method with Gartling (1990) reference results is fully satisfying,
while all the computations show that 3D effects become significant only for
values of the Reynolds number higher than 400.

Re = 400

Re = 600

Re = 800
Figure 4.
Isothermal flow:
pressure contours on
bottom and side walls,
Re = 400, 600, 800

Re = 400 Re = 600 Re = 800

to
p 

w
al

l
bo

tto
m

 w
al

l

Figure 5.
Isothermal flow: oil flow
streaklines on bottom
and top wall, Re = 400,
600, 800
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Stratified flow
In this section stratified flow with Reynolds number Re = 800, Prandtl number
Pr = 1 and Froude number Fr = Re2/Gr = 16/9 has been considered. A step
height equal to 1/2 of the channel height H and two channel widths W , namely
W � 2:5H and W � 5H , have been considered. This test case has been
extensively studied in two-dimensions by Leone (1990), but, at least to the
authors' knowledge, there are no comparison data available in the external
literature for the corresponding three-dimensional problem, the only exception
being the example of application presented by Nonino et al. (1997).

All model equations have been cast in non-dimensional form, as in the
isothermal flow; the dimensionless temperature is defined as
t � �T ÿ Tc�=�Th ÿ Tc�, where Th and Tc represent the temperatures of the
top (hot) and bottom (cold) walls. The dimensionless domains considered are
0 < x < 15, ÿ0:5W=H < y < 0:5W=H and ÿ0:5 < z < 0:5. Boundary
conditions for velocity and pressure are the same as in the isothermal flow case,
with the fully developed velocity profiles at inlet calculated from the equation
(30) with umax � 1:73 and m � 6:6 for W � 2:5H , and umax � 1:61 and
m � 13:6 for W � 5H . The assumed inlet temperature distribution is given by

t � 2 z �31�

Thus, the specified thermal boundary conditions are:

. t given by equation (31) on the inlet section (x � 0, 0 < z < 0:5);

. @t=@n � 0 on the step wall (x � 0;ÿ0:5 < z < 0) and on the lateral
walls (y � �0:5W=H );

16
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Figure 6.
Isothermal flow:

primary reattachment
length
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. t � 1 on the top wall (z � 0:5);

. t � 0 on the bottom wall (z � ÿ0:5);

. @t=@n � 0 at the outlet (x � 15);

The initial conditions are u � 0:5, v � w � 0, p � 0 and t � 0:5 in the whole
domain. The assumed value for the reference temperature t0 is 0.

Symmetry considerations allowed the reduction of the computational
domain in the y direction to 0 < y < 0:5W /H . Regardless of the channel width,
the grid employed consists of 90x20x16 linear elements (28,800 elements and
32487 nodes) of equal size in the x and z directions (�x � 0:166665 and
�z � 0:0625) and stretched in the y direction, with the minimum size near the
lateral wall and the maximum size near the symmetry plane. The selected
values of (�#�p and (�#�v � ��#�t were equal to 0.05 and 0.1, respectively, for
both test cases. Calculations were stopped when the Euclidean norms of the
velocity change between two successive time steps were less than 1x10-6. Once
again, no upwinding techniques were employed.

With reference to the channel width W � 5H , plots of the velocity vectors
and of the pressure and temperature contours on the symmetry plane are
shown in Figure 7.

The three-dimensional structure of the velocity field and its effects on the
pressure distributions are apparent in Figures 8 and 9, showing pressure
contours on bottom and vertical walls and oil flow streaklines on horizontal
walls.

The wavy flow pattern near the lateral walls, apparent in Figure 8, is due to
the presence of recirculation regions on the transverse cross-section of the
channel.

Conclusions
A finite element procedure is described for the solution of two- and three-
dimensional incompressible laminar flows using primitive variables and equal
order interpolations for velocity components, temperature and pressure. The
algorithm is cast in a time dependent form which shares many features with
the SIMPLER finite difference method.

(a)

(b)

(c)

Figure 7.
Test case with W=5H ,
symmetry plane:
(a) velocity vectors;
(b) pressure contours,
values from ±0.16 to
0.26, step 0.04;
(c) temperature contours,
values from 0.1 to 0.9,
step 0.1
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Figure 9.
Test case with W � 5H ,

stratified flow, oil flow
streaklines on bottom

and top wall,
W � 2:5H , W � 5H

Figure 8.
Stratified flow, pressure
contours on bottom and

side walls, W = 2.5H ,
W = 5H
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The numerical simulations reported in this paper concern the three-
dimensional isothermal and stratified flow over backward-facing steps in
channels of different widths. In spite of the use of equal order shape functions
in the approximation of both velocity and pressure, the calculated pressure
fields never show any sign of checkerboarding.
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